
LA-UR-22-20788
Approved for public release; distribution is unlimited.

Title: Fast BLT Code

Author(s): Nelson, Eric Michael

Intended for: Report

Issued: 2022-01-31

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government
retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government
purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of
Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does
not endorse the viewpoint of a publication or guarantee its technical correctness.

1

Fast BLT Code
Eric M Nelson

27 January 2022

This note discusses numerical algorithmic software design considerations and performance estimates
for a fast BLT coupling code [1] written in c++. The aim of this code is to conduct faster parameter
studies over line orientations. The original matlab code was written by Mike Rivera. Art Barnes ported
this code to julia. I rewrote portions of the code for speed improvement, mainly to eliminate some
redundant computation when calculating many line orientations. But this code is still far from optimal.

Most of the compute time will ultimately be in inverse FFTs. Most of the work outside of the inverse
FFTs is calculating the inputs to the inverse FFTs: the fourier transforms of the coupled terminal voltages
and currents. This note is mostly focused on calculating these inverse FFT inputs.

Common Terms
Many terms in the BLT formulation are independent of the line orientation 𝜙𝜙, and thus do not need to
be recalculated for each line orientation. This section identifies the common terms that do not need to
be recalculated for each line orientation, and how those terms are used in the remaining calculations for
each line orientation.

Let 𝐸𝐸�𝜃𝜃 = 𝐸𝐸�0 cos𝛼𝛼 be the fourier transform of the vertical (or polar) electric field component 𝐸𝐸𝜃𝜃, and
let 𝐸𝐸�𝜙𝜙 = −𝐸𝐸�0 sin𝛼𝛼 be the fourier transform of the horizontal (or azimuthal) electric field component
𝐸𝐸𝜙𝜙. The minus sign is due to the coordinate system employed by the BLT formulation as described by
Tesche differing from the high-altitude EMP codes.

The first source term is

𝑆𝑆1 =
𝑒𝑒𝛾𝛾𝛾𝛾

2
(𝑒𝑒−𝜒𝜒𝜒𝜒 − 𝑒𝑒−𝛾𝛾𝛾𝛾)�

𝐸𝐸�𝜃𝜃 sin𝜓𝜓 cos𝜙𝜙 𝑊𝑊𝜃𝜃 − 𝐸𝐸�𝜙𝜙 sin𝜙𝜙 𝑊𝑊𝜙𝜙

𝛾𝛾 − 𝜒𝜒
+ 𝑗𝑗

𝐸𝐸�𝜃𝜃 cos𝜓𝜓
𝑘𝑘 sin𝜓𝜓

(𝑊𝑊𝜃𝜃 − 1 + 𝑅𝑅𝑣𝑣)�

where 𝜒𝜒 = 𝑗𝑗𝑗𝑗 cos𝜓𝜓 cos𝜙𝜙 and
𝑊𝑊𝜃𝜃 = 𝑒𝑒𝑗𝑗𝑗𝑗ℎ sin𝜓𝜓 − 𝑅𝑅𝑣𝑣𝑒𝑒−𝑗𝑗𝑗𝑗ℎ sin𝜓𝜓
𝑊𝑊𝜙𝜙 = 𝑒𝑒𝑗𝑗𝑗𝑗ℎ sin𝜓𝜓 + 𝑅𝑅ℎ𝑒𝑒−𝑗𝑗𝑗𝑗ℎ sin𝜓𝜓.

The second source term is

𝑆𝑆2 =
𝑒𝑒𝛾𝛾𝛾𝛾

2
(𝑒𝑒−𝜒𝜒𝜒𝜒𝑒𝑒−𝛾𝛾𝛾𝛾 − 1)�

𝐸𝐸�𝜃𝜃 sin𝜓𝜓 cos𝜙𝜙 𝑊𝑊𝜃𝜃 − 𝐸𝐸�𝜙𝜙 sin𝜙𝜙 𝑊𝑊𝜙𝜙

𝛾𝛾 + 𝜒𝜒
− 𝑗𝑗

𝐸𝐸�𝜃𝜃 cos𝜓𝜓
𝑘𝑘 sin𝜓𝜓

(𝑊𝑊𝜃𝜃 − 1 + 𝑅𝑅𝑣𝑣)�.

We will calculate 𝑆𝑆1′ = 𝑆𝑆1𝑒𝑒−𝛾𝛾𝛾𝛾 and 𝑆𝑆2′ = 𝑆𝑆2𝑒𝑒−𝛾𝛾𝛾𝛾 in order to avoid overflow. The five complex terms or
factors independent of 𝜙𝜙 that we will precalculate are:

−𝛾𝛾𝛾𝛾, 𝑒𝑒−𝛾𝛾𝛾𝛾, 𝐸𝐸�𝑥𝑥𝑥𝑥 = 𝐸𝐸�𝜃𝜃𝑊𝑊𝜃𝜃, 𝐸𝐸�𝑥𝑥𝑥𝑥 = 𝐸𝐸�𝜙𝜙𝑊𝑊𝜙𝜙, 𝑉𝑉𝑡𝑡� = 𝑗𝑗
𝐸𝐸�𝜃𝜃 cos𝜓𝜓
2𝑘𝑘 sin𝜓𝜓

(𝑊𝑊𝜃𝜃 − 1 + 𝑅𝑅𝑣𝑣).

Then

2

𝑆𝑆1′ = (𝑒𝑒−𝜒𝜒𝜒𝜒 − 𝑒𝑒−𝛾𝛾𝛾𝛾)�
𝐸𝐸�𝑥𝑥𝑥𝑥 sin𝜓𝜓 cos𝜙𝜙 − 𝐸𝐸�𝑥𝑥𝑥𝑥 sin𝜙𝜙

𝛾𝛾𝛾𝛾 − 𝜒𝜒𝜒𝜒
𝐿𝐿
2

+ 𝑉𝑉𝑡𝑡��

𝑆𝑆2′ = (1 − 𝑒𝑒−𝜒𝜒𝜒𝜒𝑒𝑒−𝛾𝛾𝛾𝛾)�
𝐸𝐸�𝑥𝑥𝑥𝑥 sin𝜓𝜓 cos𝜙𝜙 − 𝐸𝐸�𝑥𝑥𝑥𝑥 sin𝜙𝜙

−𝛾𝛾𝛾𝛾 − 𝜒𝜒𝜒𝜒
𝐿𝐿
2

+ 𝑉𝑉𝑡𝑡��.

Once the source terms are known, voltages and currents at the line terminations are calculated via the
matrix equations

�
𝑉𝑉(0)
𝑉𝑉(𝐿𝐿)� = �1 + 𝜌𝜌1 0

0 1 + 𝜌𝜌2
� �−𝜌𝜌1𝑒𝑒

−𝛾𝛾𝛾𝛾 1
1 −𝜌𝜌2𝑒𝑒−𝛾𝛾𝛾𝛾

�
−1

�
𝑆𝑆1′

𝑆𝑆2′
� = AV �

𝑆𝑆1′

𝑆𝑆2′
�

and

�
𝐼𝐼(0)
𝐼𝐼(𝐿𝐿)� =

1
𝑍𝑍𝑐𝑐
�1 − 𝜌𝜌1 0

0 1 − 𝜌𝜌2
� �−𝜌𝜌1𝑒𝑒

−𝛾𝛾𝛾𝛾 1
1 −𝜌𝜌2𝑒𝑒−𝛾𝛾𝛾𝛾

�
−1

�
𝑆𝑆1′

𝑆𝑆2′
� = AI �

𝑆𝑆1′

𝑆𝑆2′
�

where 𝜌𝜌1 and 𝜌𝜌2 are the voltage reflection coefficients at the two ends 𝑥𝑥 = 0 and 𝑥𝑥 = 𝐿𝐿 respectively,
and 𝑍𝑍𝑐𝑐 is the characteristic impedance of the line. Incident voltage and current amplitudes can also be
calculated. For all such quantities, the matrices multiplying the source vector do not depend on the line
orientation 𝜙𝜙. These matrices will thus be assembled into a precalculated 𝑁𝑁𝑡𝑡𝑡𝑡 × 2 product matrix 𝐴𝐴 that
multiplies the 𝜙𝜙-dependent source vector to yield the 𝑁𝑁𝑡𝑡𝑡𝑡 terminal quantities of interest.

Note that each row of 𝐴𝐴 can assume different line terminations, thus facilitating parameter studies over
line terminations in addition to line orientations. Also, some terminal quantities might be related by a
single complex factor, enabling further optimization, but we will not discuss that further here.

The time domain terminal quantities are obtained via inverse fourier transform. We will combine pairs
of real terminal quantities into complex inverse fourier transforms. Thus only 𝑁𝑁𝑡𝑡𝑡𝑡/2 complex inverse
fourier transforms are required. Furthermore, for 𝑛𝑛 time points we only calculate 𝑛𝑛 2⁄ + 1 frequency
points. The remaining points in the fourier transforms are determined by symmetry.

Floating Point Computational Cost
The common numerator

𝑛𝑛𝑠𝑠 = �𝐸𝐸�𝑥𝑥𝑥𝑥 sin𝜓𝜓 cos𝜙𝜙 − 𝐸𝐸�𝑥𝑥𝑥𝑥 sin𝜙𝜙�
𝐿𝐿
2

can be calculated via two real multiplies of a complex number, and a complex addition. We write the
corresponding real operations as 4M, 2A (2FMA), which means either 4M and 2A without any FMAs; or
2M and 2 FMAs.

Each ratio with the common numerator is then one real addition for the denominator, followed by a
complex division. Each complex division can be replaced by a complex multiply (4M, 2A (2FMA)), a
magnitude squared (2M, A (FMA)), a reciprocal and a real multiplication (D,2M). Including the sum with
𝑉𝑉𝑡𝑡� makes this last portion D,2M,2A (2FMA).

Given these ratios, the first source term 𝑆𝑆1′ is then a complex addition followed by a complex
multiplication (2A followed by 4M,2A (2FMA)). The second source term 𝑆𝑆2′ is a complex multiply, a real
addition, and another complex multiply (4M,2A (2FMA); 1A; 4M,2A (2FMA)).

3

The calculations above need −𝜒𝜒𝜒𝜒 and 𝑒𝑒−𝜒𝜒𝜒𝜒. The former requires an add (for the integer frequency
index) and a multiply. The latter can be calculated via vectorized sin and cos functions, or with nearly
equivalent accuracy via sin and cos for a few base 𝜒𝜒𝜒𝜒 followed by complex multiplication by a
precalculated array of 𝑒𝑒−Δ𝜒𝜒𝜒𝜒. We will proceed with the latter method and assume the amortized cost of
sin and cos for the base 𝜒𝜒𝜒𝜒 is negligible.

Each of the 𝑁𝑁𝑡𝑡𝑡𝑡 terminal quantities then requires two complex multiplications and a complex addition.
We will ignore for now that possibility that some of terminal quantities might be related by a single
complex factor that would enable some further computational cost savings.

Finally, combining a pair of terminal quantities into a single complex fourier transform requires four real
(component) additions per frequency point, accounting for the fact that each of the lower-half
frequency points we calculate contributes to two frequency points in the full inverse fourier transform.

The following table summarizes the computational cost per line orientation per frequency point. The
last two rows are per terminal quantity 𝑁𝑁𝑡𝑡𝑡𝑡, although the actual production subroutine will process
terminal quantities in pairs. The total cost per frequency point is 37 + 8𝑁𝑁𝑡𝑡𝑡𝑡 multiplies (M), 25 + 8𝑁𝑁𝑡𝑡𝑡𝑡
additions (A), 2 divisions (D), with opportunities for 20 + 6𝑁𝑁𝑡𝑡𝑡𝑡 fused multiply-adds (FMA). Employing
fused multiply-adds means 17 + 2𝑁𝑁𝑡𝑡𝑡𝑡 multiplies, 5 + 2𝑁𝑁𝑡𝑡𝑡𝑡 additions, 20 + 6𝑁𝑁𝑡𝑡𝑡𝑡 fused multiply-adds
and 2 divisions.

Table 1. Computational cost by kernel.
result computation memory loop

−𝝌𝝌𝝌𝝌 M,A A
numerator 4M,2A (2FMA) 4RM A
first ratio/sum 8M,6A (5FMA),D 4RM 2WC A
second ratio/sum 8M,6A (5FMA),D 2WC A

𝒆𝒆−𝝌𝝌𝝌𝝌 4M,2A (2FMA) 2RC B
first source term 4M,4A (2FMA) 2RM 2RC, 2WC B
second source term 8M,5A (4FMA) 2RC, 2WC B
terminal quantity 8M,6A (6FMA) 4RM 4RC C
pair combination 2A 2WM C

The next table presents the theoretical computational cost in clock cycles per double-precision short
vector of frequency points, for various processor core architectures, assuming ideal floating-point
computational throughput on all floating point vector processing units and instruction ports on a
processor core. Each double-precision short vector is 2 (for SSE) or 4 (for AVX) frequency points. The
computational throughput of divide units was measured, and is also reported in the table. We
furthermore assume divide latency cannot hide any terminal quantity computations beyond the source
term: 8M, 8A (6 FMA) per terminal quantity. Division throughput is theoretically a limiting factor on the
broadwell processor architecture.

The last two columns present single-thread times for an 𝑛𝑛 = 223 time point calculation with 𝑁𝑁𝑡𝑡𝑡𝑡 = 2
double-precision terminal quantities. Recall we calculate only 𝑛𝑛 2⁄ + 1 frequency points. The inverse

4

fourier transform (IFFT) times are measured Intel MKL FFT compute times from [2]. If we can obtain
50% of peak performance then calculation of the fourier transforms (the kernels in table 1) will consume
only 15% to 25% of the total compute time. Hence the statement in the introduction that we expect the
compute time to be dominated by the inverse FFTs.

Table 2. Single-thread theoretical computational cost
on various machines/architectures, with 𝑛𝑛 = 223 example.

machine architecture

division
 clock cycles
per vector

clock cycles
per vector

base clock
speed
(GHz)

𝑵𝑵𝒕𝒕𝒕𝒕 = 𝟐𝟐
time
(ms)

IFFT
time
(ms)

cicero nehalem 9.276 39 + 8𝑁𝑁𝑡𝑡𝑡𝑡 2.67 43.2 253
seneca ivy bridge 18.732 39 + 8𝑁𝑁𝑡𝑡𝑡𝑡 1.70 33.9 241
martial broadwell 16.400 32.8 + 5𝑁𝑁𝑡𝑡𝑡𝑡 2.20 20.4 155
lucretius coffee lake 4.952 22 + 5𝑁𝑁𝑡𝑡𝑡𝑡 2.60 12.9 94

Note that our current BLT implementations are much slower than this estimate. I have one trial c++
code that takes 0.77 seconds per line orientation on cicero, instead of the 0.35 seconds I expect we can
achieve. While not ideal, the trial c++ code is 3.8 times faster than the julia implementation.

Memory Transaction Cost
Each row of table 1 also lists real (one floating point number) memory transactions per frequency point:
RM and RC for a read from main memory or cache respectively; and WM and WC for a write to main
memory or cache. The reads and writes to cache assume the calculation is tiled and that the stages of
the calculation are gathered into three loops (labeled A, B and C) over frequency points. Splitting the
tiled calculation into more loops will increase the cache memory traffic, but will not increase the main
memory traffic.

The last two rows of table 1 are per terminal quantity, as mentioned earlier. The two writes to main
memory (2WM) for the pair combination kernel is per terminal quantity assuming the kernel is
processing a pair of terminal quantities. This kernel writes two complex numbers (one for positive
frequency, one for negative frequency – four real numbers) per frequency point, but two terminal
quantities are being processed, not just one terminal quantity.

An 𝑁𝑁𝑡𝑡𝑡𝑡 = 2 calculation requires 10 + 4𝑁𝑁𝑡𝑡𝑡𝑡 = 18 reads from and 2𝑁𝑁𝑡𝑡𝑞𝑞 = 4 writes to main memory per
frequency point, which is 22 × 8 = 176 bytes per frequency point assuming streaming stores. The last
column in table 3 below lists the main memory bandwidth (BW) required at the theoretical peak floating
point computational performance listed in table 2 for 𝑁𝑁𝑡𝑡𝑡𝑡 = 2. A high-performance implementation will
consume much of the max available bandwidth to main memory listed in the fourth column, especially
on the coffee lake architecture.

The third column lists the minimum number of clock cycles required for loads and stores for one short
vector of frequency points. The estimate assumes data are in L1 cache, but we expect some of the data
to have been prefetched into L2 cache, which will have a somewhat slower throughput. Nevertheless,
for the purpose of this estimate we claim loads and stores are not the limiting factor for theoretical

5

single-thread performance because fewer clock cycles are required for loads and stores in table 3 than
are required for floating point computation in table 2.

Table 3. Theoretical memory costs and rates, with 𝑁𝑁𝑡𝑡𝑡𝑡 = 2.

machine architecture

load/store
clock cycles
per vector

main memory
max BW per

socket (GB/s)

BW required
per thread at
peak (GB/s)

cicero nehalem 32 25.6 12.43
seneca ivy bridge 32 25.6 15.84
martial broadwell 16 68.3 26.32
lucretius coffee lake 16 41.8 41.62

Table 3 does make clear that a high-performance implementation running on multiple cores will soon
encounter a fundamental main memory bandwidth limitation. Tiling is essential for enabling loads and
stores to not be the limiting factor for single-thread performance, but tiling is not enough to let the
calculation scale up efficiently to a large number of threads and cores. At 50% of peak floating-point
performance, one should expect no more than 5 threads to run effectively on a broadwell socket.

This limitation assumes each thread works on a single line orientation and does not share any data (via
cache) with any other thread. Having a thread calculate multiple line orientations for each tile (chunk)
of frequency points reduces the thread’s demand on main memory bandwidth. The source field, line
parameters and terminal quantity coefficients are identical for the extra line orientations, so their values
are already in cache. No extra reads from main memory are required, only extra writes. If 𝑁𝑁𝜙𝜙 is the
number of line orientations the thread is calculating, then the main memory transaction cost per
frequency point is 10 + �4 + 2𝑁𝑁𝜙𝜙�𝑁𝑁𝑡𝑡𝑡𝑡 reals, or 144 + 32𝑁𝑁𝜙𝜙 bytes for 𝑁𝑁𝑡𝑡𝑡𝑡 = 2.

Table 4. Relative main memory bandwidth requirement, 𝑁𝑁𝑡𝑡𝑡𝑡 = 2.
of line

orientations 𝑵𝑵𝝓𝝓
per thread

of threads 𝑵𝑵𝒕𝒕𝒕𝒕
1 2 4 8

1 1.000 1.182 1.545 2.273
2 0.591 0.773 1.136 1.864
3 0.455 0.636 1.000 1.727
4 0.386 0.568 0.932 1.659

Table 4 lists the relative main memory bandwidth required per thread as the number of line orientations
each thread calculates is increased. The single thread column assumes the thread does not get to share
data (via cache) with any other thread.

If multiple threads are sufficiently synchronized to operate on the same tile (chunk) of frequency points
while in cache, then the main memory bandwidth requirement increases over the single thread case,
but only gradually, as shown in the last three columns of table 4. This suggests nearly all 10 cores of a
socket of martial can be employed simultaneously at peak theoretical computational rate, or up to 24
cores of a broadwell socket if the code runs at 50% of peak. The mathematical expression for the

6

required main memory bandwidth relative to the single thread single line orientation main memory
bandwidth 𝐵𝐵𝑊𝑊𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is

𝐵𝐵𝑊𝑊𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝐵𝐵𝑊𝑊𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
=

1
𝑁𝑁𝜙𝜙

144 + 32𝑁𝑁𝜙𝜙𝑁𝑁𝑡𝑡ℎ
176

 for 𝑁𝑁𝑡𝑡𝑡𝑡 = 2.

Without such synchronization the main memory bandwidth requirement would simply scale with the
number of threads, assuming negligible accidental synchronization. Multiply the single thread column in
table 4 by the thread count. Without synchronization the prospect for effectively employing a large
number of cores quickly fades.

We thus conclude that our fast BLT coupling code should coordinate its threads to operate sufficiently
synchronously on the same frequency points (tiles) over multiple line orientations, and allow each
thread to likewise calculate multiple line orientations for each tile (chunk) of frequency points. Such
synchronization is essential to preventing main memory bandwidth from throttling a threaded (multi-
core) calculation of inputs to the inverse FFTs.

Memory Storage Cost
The main memory storage cost for the large arrays is at least (𝑛𝑛 2⁄ + 1)(10 + 4𝑁𝑁𝑡𝑡𝑡𝑡) + 𝑛𝑛 𝑁𝑁𝑡𝑡𝑡𝑡𝑁𝑁𝜙𝜙𝑁𝑁𝑡𝑡ℎ +
𝑛𝑛 𝑁𝑁𝑡𝑡ℎ doubles, where the last term is scratch space for the inverse FFTs. Storing a second incident field
(𝐸𝐸�𝑥𝑥𝑥𝑥,𝐸𝐸�𝑥𝑥𝑥𝑥,𝑉𝑉𝑡𝑡�) changes the first term to (𝑛𝑛 2⁄ + 1)(16 + 4𝑁𝑁𝑡𝑡𝑡𝑡) doubles, which then enables the coupling
calculations to proceed efficiently as one ray (incident field) concludes and another ray starts. For 𝑛𝑛 =
223 and 𝑁𝑁𝑡𝑡𝑡𝑡 = 2, this storage requirement is 0.8053 + 0.1342 𝑁𝑁𝑡𝑡ℎ(𝑁𝑁𝜙𝜙 + 1 2⁄) GB.

Table 5. Main memory storage requirement for 𝑁𝑁𝑡𝑡𝑡𝑡 = 2 and 𝑛𝑛 = 223 time points.

machine
threads
𝑵𝑵𝒕𝒕𝒕𝒕

lines per
thread
𝑵𝑵𝝓𝝓

bytes
per time

point
GB

required
GB

available
cicero 4 15 1088 9.13 24
seneca 2 30 1072 8.99 16
martial 10 6 1136 9.53 192
snow 18 3 1104 9.26 64
lucretius 6 10 1104 9.26 32

Table 5 presents main memory storage requirements for the various machines, assuming 𝑁𝑁𝑡𝑡𝑡𝑡 = 2
terminal quantities are desired for 𝑀𝑀𝜙𝜙 = 61 line orientations for each ray, hence 𝑁𝑁𝜙𝜙𝑁𝑁𝑡𝑡ℎ ≤ 𝑀𝑀𝜙𝜙. The
storage requirement is mostly dictated by how many line orientations (times terminal quantities) will be
stored at once. The fifth column is the storage required for 𝑛𝑛 = 223 time points. The martial and snow
rows are per socket. The only machine approaching a main memory storage limitation is seneca.

Table 5 thus shows that main memory storage will not constrain our ability to calculate many line
orientations simultaneously for the sake of reducing the demand on main memory bandwidth.

Cache size influences the number of frequency points in each tile (chunk). Each frequency point in the
tile uses 16 + 4𝑁𝑁𝑡𝑡𝑡𝑡 doubles = 128 + 32𝑁𝑁𝑡𝑡𝑡𝑡 bytes of storage nominally in cache, provided the terminal

7

quantity fourier transform output is written with streaming stores. For 𝑁𝑁𝑡𝑡𝑡𝑡 = 2 terminal quantities this
196 bytes per frequency point.

A 32 kB L1 cache can thus hold up to 167 frequency points. Ancillary data such as line orientation
parameters slightly reduces the number of frequency points that fit in cache. A 256 kB L2 cache can
hold up to 1337 frequency points. So for 𝑁𝑁𝑡𝑡𝑡𝑡 = 2 expect each tile to be 150 to 1300 frequency points.
This is plenty enough points for vectorized loops to be effective. Loop and tile overhead will be modest.

Not using streaming stores for the terminal quantity fourier transform output causes each frequency
point to use an additional 2 doubles of cache, so 16 + 6𝑁𝑁𝑡𝑡𝑡𝑡 doubles. This would slightly reduce the
optimal number of frequency points in a tile.

Data Layout
The array of structures (AoS) of short vectors data layout presented in table 6 facilitates the
computation. It reduces the number of index registers required for the computation. It enables the
computation to proceed without shuffles, thus reducing instruction count and avoiding the common
bottleneck on a core’s instruction port 5 [3]. It facilitates hardware and software prefetching.

Four arrays interleave short vectors as shown in table 6. The length in column 2 is the number of
frequency components, where 𝑛𝑛 is the number of time points, and 𝑚𝑚 is the number of frequency points
in a tile (chunk). Divide by 4 (and round up) for the number of short vector structures, assuming double
precision 256-bit AVX instructions and registers.

Table 6. Data layout.
array length sv0 sv1 sv2 sv3 sv4 sv5

incident 𝑛𝑛 2⁄ + 1 𝑅𝑅𝑅𝑅 𝐸𝐸�𝑥𝑥𝑥𝑥 𝐼𝐼𝐼𝐼 𝐸𝐸�𝑥𝑥𝑥𝑥 𝑅𝑅𝑅𝑅 𝐸𝐸�𝑥𝑥𝑥𝑥 𝐼𝐼𝐼𝐼 𝐸𝐸�𝑥𝑥𝑥𝑥 𝑅𝑅𝑅𝑅 𝑉𝑉𝑡𝑡� 𝐼𝐼𝐼𝐼 𝑉𝑉𝑡𝑡�
line 𝑛𝑛 2⁄ + 1 −𝑅𝑅𝑅𝑅 𝛾𝛾𝛾𝛾 −𝐼𝐼𝐼𝐼 𝛾𝛾𝛾𝛾 𝑅𝑅𝑅𝑅 𝒆𝒆−𝛄𝛄𝑳𝑳 𝐼𝐼𝐼𝐼 𝒆𝒆−𝛄𝛄𝑳𝑳

scratch 𝑚𝑚 𝑅𝑅𝑅𝑅 𝑆𝑆1′ 𝐼𝐼𝐼𝐼 𝑆𝑆1′ 𝑅𝑅𝑅𝑅 𝑆𝑆2′ 𝐼𝐼𝐼𝐼 𝑆𝑆2′ 𝑅𝑅𝑅𝑅 𝒆𝒆−𝚫𝚫𝝌𝝌𝝌𝝌 𝐼𝐼𝐼𝐼 𝒆𝒆−𝚫𝚫𝝌𝝌𝝌𝝌
terminal 𝑛𝑛 2⁄ + 1 𝑅𝑅𝑅𝑅 𝐴𝐴1 𝐼𝐼𝐼𝐼 𝐴𝐴1 𝑅𝑅𝑅𝑅 𝐴𝐴2 𝐼𝐼𝐼𝐼 𝐴𝐴2

The incident field array interleaves 6 short vectors as indicated by columns sv0 through sv5. This
incident field array is separate from the line array that interleaves 4 short vectors. Employing separate
incident field and line arrays enables the same line array to be used with different incident fields.
Separating the line array into separate 𝛾𝛾 and 𝑒𝑒−𝛾𝛾𝛾𝛾 arrays would likewise facilitate running calculations
with different line lengths, but we do not pursue that option further here.

The scratch array interleaves 6 short vectors ultimately holding the source terms 𝑆𝑆1′ and 𝑆𝑆2′ , but they also
store intermediate results (e.g., the first and second ratios/sums) in the source vector calculation.
Reuse of the scratch array in cache is an essential feature of tiling to reduce main memory transactions.
The 𝑒𝑒−Δ𝜒𝜒𝜒𝜒 short vectors are computed prior to the loop over tiles of frequency points, interleaved with
the storage for source terms, and likewise kept in cache.

The terminal quantity array interleaves 4 or 8 short vectors, with 4 shown in table 6. Interleaving 8
vectors would store matrix coefficients 𝐴𝐴11,𝐴𝐴12,𝐴𝐴21,𝐴𝐴22 for two terminal quantities. In either case

8

there can be many terminal quantity arrays, but a kernel will only index one (4 or 8 short vector) or two
(4 short vector) terminal quantity arrays at a time.

This data layout means only 3 registers are needed to index the arrays, instead of 8 or 16. Some kernels
index the first three arrays in table 6. Other kernels index the scratch and terminal quantity arrays. The
trick will be to write code that uses the data layout effectively. Short vector primitive data types and
short vector intrinisics are two possibilities, but both of these options are clunky.

The hardware prefetcher only has to follow 2 arrays (incident and line) with this data layout, rather than
5 or 10 arrays if a more traditional data layout were employed. The number of arrays a hardware
prefetcher can recognize and follow is usually quite limited. Logic for software prefetch is likewise
simplified with just 2 arrays.

Cost Estimate for a Coupling Smile
Consider a sample problem [4] where 𝑁𝑁𝑡𝑡𝑡𝑡 = 2 terminal quantities for 𝑛𝑛 = 223 time points are desired
for 𝑀𝑀𝜙𝜙 = 61 line orientations for 𝑁𝑁𝑟𝑟 = 697 rays (ground locations), run on a machine like snow or
martial (broadwell xeon processors). The inverse FFTs on martial cost 6590 core seconds. With a
parallel speedup of roughly 6 per socket on martial this yields 557 seconds = 9.3 minutes on one node
(two sockets). The corresponding inverse FFT compute time on snow is 435 seconds = 7.3 minutes.
Note the FFT parallel speedup is limited by main memory latency and bandwidth, not the number of
cores.

Computing the inputs to the inverse FFTs as described above takes 1735 core seconds, assuming we
obtain 50% of the peak theoretical compute rate. With nearly perfect parallel speedup this becomes
86.7 seconds = 1.45 minutes on martial or 48.2 seconds = 0.80 minutes on snow.

Neglecting terminal quantity data reduction (e.g., peak coupled voltages or currents), the total compute
time for the loops over line orientations is 10.8 minutes on martial or 8.1 minutes on one node of snow.
Some additional calculation is required for each ray, to calculate the source array. This additional work
is mainly an FFT of the two component time profiles of theray’s incident EMP. Adding a 2 �𝑀𝑀𝜙𝜙𝑁𝑁𝑡𝑡𝑡𝑡�⁄ =
3.3% fraction to the preceding compute time will cover this per-ray cost. The total compute time is thus
11.1 minutes on martial or 8.3 minutes on one node of snow. This is much faster than the ~10 hours
required for the original matlab implementation of the BLT coupling code.

Table 7. Estimated compute times for the sample problem.

machine
compute

time (min)
martial serial 143.3
martial parallel 11.1
snow node parallel 8.3

One can presume a good GPU implementation on a very expensive (double-precision capable) GPGPU
will be even faster.

9

Summary
A fast BLT code can calculate coupling smile diagrams of interest in under 15 minutes on a single HPC
node or high-performance workstation, much faster than the many hours our current coupling codes
require (on the same hardware). The fast BLT coupling code must tile over frequency points, calculate
multiple line orientations per tile, and to some degree synchronize tiles over threads, in order to make
effective use of individual and multiple cores without running into main memory bandwidth limitations.
The fast BLT coupling code should employ computational kernels that eliminate redundant calculation
while keeping memory transactions modest, such as the kernels described. An array of structures of
short vectors data layout facilitates effective vectorization and prefetching, although the code working
with this layout will be clunky.

References
[1] F. M. Tesche, M. Ianoz and T. Karlsson, EMC Analysis Methods and Computational Models, Wiley

Interscience, December 1996.
[2] Eric M Nelson, “Intel MKL FFT Performance”, December 2021.
[3] Intel 64 and IA-32 Architectures Optimization Reference Manual, Intel, June 2016.
[4] Eric M Nelson, “A Strategy for High-Level EMP Vulnerability Assessment”, 2 June 2021;

LA-CP-21-20508.

	Fast BLT Code
	Common Terms
	Floating Point Computational Cost
	Memory Transaction Cost
	Memory Storage Cost
	Data Layout
	Cost Estimate for a Coupling Smile
	Summary
	References

